客服電話
在線客服
Online
公眾號
回到頂部
來源:中國環境(jing)報第8版
2020年(nian)(nian)中央經濟(ji)工(gong)作會議明(ming)(ming)(ming)確提出,打(da)好(hao)污(wu)(wu)(wu)染(ran)(ran)防治(zhi)(zhi)攻堅(jian)戰,堅(jian)持方向不變、力度不減,突出精準治(zhi)(zhi)污(wu)(wu)(wu)、科(ke)(ke)學(xue)治(zhi)(zhi)污(wu)(wu)(wu)、依法治(zhi)(zhi)污(wu)(wu)(wu),推動生態環(huan)(huan)境(jing)(jing)質量持續好(hao)轉(zhuan)。近(jin)年(nian)(nian)來大氣(qi)污(wu)(wu)(wu)染(ran)(ran)治(zhi)(zhi)理成(cheng)效顯(xian)(xian)著(zhu),環(huan)(huan)境(jing)(jing)空(kong)氣(qi)質量明(ming)(ming)(ming)顯(xian)(xian)改善,細(xi)顆粒物濃(nong)度明(ming)(ming)(ming)顯(xian)(xian)下(xia)降,重(zhong)污(wu)(wu)(wu)染(ran)(ran)天氣(qi)明(ming)(ming)(ming)顯(xian)(xian)減少。但臭氧污(wu)(wu)(wu)染(ran)(ran)問題逐步顯(xian)(xian)現,濃(nong)度呈(cheng)逐年(nian)(nian)上升態勢(shi),成(cheng)為影響環(huan)(huan)境(jing)(jing)空(kong)氣(qi)質量的又一重(zhong)要污(wu)(wu)(wu)染(ran)(ran)物,加強(qiang)細(xi)顆粒物和臭氧協同控制(zhi)成(cheng)為改善環(huan)(huan)境(jing)(jing)空(kong)氣(qi)質量的關鍵。大氣(qi)污(wu)(wu)(wu)染(ran)(ran)防治(zhi)(zhi)工(gong)作的艱巨性和復雜(za)性,亟需監(jian)(jian)測科(ke)(ke)技(ji)(ji)力量的支持。聚(ju)光科(ke)(ke)技(ji)(ji)(杭州(zhou))股(gu)份有限公司(以下(xia)簡稱(cheng)“聚(ju)光科(ke)(ke)技(ji)(ji)”)成(cheng)立(li)于2002年(nian)(nian),經過近(jin)20年(nian)(nian)的發(fa)(fa)展,現已成(cheng)為國(guo)內(nei)高端(duan)分析儀器儀表領軍企業,其自主(zhu)研(yan)發(fa)(fa)的全流程(cheng)監(jian)(jian)測設備技(ji)(ji)術成(cheng)熟,已廣泛應用于眾多國(guo)家(jia)級/省級重(zhong)點(dian)項(xiang)目建設。通過多年(nian)(nian)技(ji)(ji)術研(yan)發(fa)(fa),公司目前取得(de)專利800余(yu)項(xiang),計(ji)算機軟件著(zhu)作權300余(yu)項(xiang),主(zhu)持或參與(yu)標準制(zhi)定70余(yu)項(xiang),累計(ji)承擔國(guo)家(jia)和地方科(ke)(ke)技(ji)(ji)計(ji)劃(hua)項(xiang)目100余(yu)項(xiang)。
強化多污染物協同管控
針(zhen)對大氣(qi)(qi)復合(he)污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)日益(yi)突出的(de)問題,聚光(guang)(guang)科技準(zhun)確分(fen)(fen)析大氣(qi)(qi)復合(he)污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)成(cheng)因(yin)(yin),強化(hua)(hua)多污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)物(wu)協(xie)(xie)同(tong)管(guan)(guan)控(kong)(kong)(kong)(kong)(kong),落實污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)源(yuan)(yuan)治理(li)任務(wu),加快實現環境(jing)(jing)空(kong)(kong)(kong)氣(qi)(qi)質量(liang)(liang)改善,其《環境(jing)(jing)空(kong)(kong)(kong)氣(qi)(qi)質量(liang)(liang)達(da)(da)標管(guan)(guan)控(kong)(kong)(kong)(kong)(kong)服務(wu)方案》通過當地(di)基(ji)礎數(shu)據分(fen)(fen)析,建立污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)成(cheng)因(yin)(yin)案例庫,掌(zhang)握污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)物(wu)歷史(shi)變化(hua)(hua)規律,指導多污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)物(wu)的(de)日常協(xie)(xie)同(tong)管(guan)(guan)控(kong)(kong)(kong)(kong)(kong)與(yu)重污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)應急。采用(yong)細顆(ke)粒(li)物(wu)(PM2.5)、可(ke)吸入(ru)顆(ke)粒(li)物(wu)(PM10)、臭(chou)氧(yang)(O3)、二氧(yang)化(hua)(hua)硫(liu)(SO2)、二氧(yang)化(hua)(hua)氮(NO2)、一(yi)(yi)氧(yang)化(hua)(hua)碳(CO)、揮(hui)發性(xing)有機(ji)物(wu)(VOCs)、甲醛(HCOH)、過氧(yang)乙酰硝酸酯(PANs)、光(guang)(guang)解速率等多因(yin)(yin)子(zi)、全(quan)流程(cheng)協(xie)(xie)同(tong)走(zou)航(hang)監(jian)測技術與(yu)激(ji)光(guang)(guang)雷達(da)(da)掃描技術,開展(zhan)重點(dian)地(di)區走(zou)航(hang)摸(mo)排(pai),快速掌(zhang)握區域(yu)污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)物(wu)濃度與(yu)污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)源(yuan)(yuan)時(shi)(shi)空(kong)(kong)(kong)分(fen)(fen)布狀(zhuang)況(kuang),識別熱點(dian)管(guan)(guan)控(kong)(kong)(kong)(kong)(kong)區域(yu)與(yu)時(shi)(shi)段;進(jin)一(yi)(yi)步結合(he)車載(zai)顆(ke)粒(li)物(wu)來源(yuan)(yuan)解析、臭(chou)氧(yang)光(guang)(guang)化(hua)(hua)學污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)綜合(he)監(jian)測系統,源(yuan)(yuan)排(pai)放清單及(ji)(ji)空(kong)(kong)(kong)氣(qi)(qi)質量(liang)(liang)模擬技術,分(fen)(fen)析各(ge)項(xiang)污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)成(cheng)因(yin)(yin)與(yu)生成(cheng)機(ji)制,識別主要污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)源(yuan)(yuan)類(lei),定量(liang)(liang)評估(gu)(gu)一(yi)(yi)次、二次污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)貢獻,識別重點(dian)管(guan)(guan)控(kong)(kong)(kong)(kong)(kong)行業(ye),為(wei)從時(shi)(shi)、空(kong)(kong)(kong)、物(wu)各(ge)角度制定差異化(hua)(hua)協(xie)(xie)同(tong)管(guan)(guan)控(kong)(kong)(kong)(kong)(kong)策略,提供決策支撐。依托多元數(shu)據分(fen)(fen)析成(cheng)果(guo)及(ji)(ji)相關工作流程(cheng)與(yu)機(ji)制構建測管(guan)(guan)治一(yi)(yi)體(ti)化(hua)(hua)達(da)(da)標管(guan)(guan)控(kong)(kong)(kong)(kong)(kong)服務(wu)體(ti)系,可(ke)根據區域(yu)、點(dian)位差異性(xing),形成(cheng)日常與(yu)重污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)分(fen)(fen)級管(guan)(guan)控(kong)(kong)(kong)(kong)(kong)策略,保(bao)障(zhang)重點(dian)區域(yu)空(kong)(kong)(kong)氣(qi)(qi)質量(liang)(liang);針(zhen)對各(ge)類(lei)污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)源(yuan)(yuan)形成(cheng)行業(ye)管(guan)(guan)理(li)、治理(li)體(ti)系,落實污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)源(yuan)(yuan)管(guan)(guan)治任務(wu),協(xie)(xie)同(tong)減(jian)少污(wu)(wu)(wu)(wu)(wu)染(ran)(ran)物(wu)排(pai)放;并多維度量(liang)(liang)化(hua)(hua)評估(gu)(gu)管(guan)(guan)控(kong)(kong)(kong)(kong)(kong)效(xiao)果(guo),確保(bao)及(ji)(ji)時(shi)(shi)發現問題,精準(zhun)定位問題,有效(xiao)解決問題,實現環境(jing)(jing)空(kong)(kong)(kong)氣(qi)(qi)質量(liang)(liang)協(xie)(xie)同(tong)管(guan)(guan)控(kong)(kong)(kong)(kong)(kong),助力環境(jing)(jing)空(kong)(kong)(kong)氣(qi)(qi)質量(liang)(liang)持續(xu)改善。
《環(huan)境空氣質量達(da)標(biao)管控服務方(fang)案》已在海(hai)南省(sheng)、宿州(zhou)市(shi)(shi)、武威市(shi)(shi)、徐州(zhou)市(shi)(shi)、聊(liao)城市(shi)(shi)、宜昌市(shi)(shi)等多個省(sheng)市(shi)(shi)區進(jin)行了應用(yong),并取得顯著效果。方(fang)案配置的核心在線監測(ce)設備均為(wei)公(gong)司自(zi)產(chan)設備,各項(xiang)技(ji)術指(zhi)標(biao)均達(da)到國內領先水平,可(ke)為(wei)大氣污染防治提供精(jing)準數據(ju)支撐。
管控提升空氣質量排名
2017年(nian)(nian),聚(ju)光(guang)科技(ji)在歷史數據研判(pan)分(fen)(fen)析基礎上,采用(yong)空氣質量走(zou)航監測(ce)車、激(ji)光(guang)雷達監測(ce)車等技(ji)術(shu)(shu)對(dui)宿州市顆粒物的整體污(wu)染(ran)特(te)征(zheng)進(jin)行(xing)了摸排分(fen)(fen)析,并制定(ding)了管控策(ce)略(lve)。2018年(nian)(nian)-2019年(nian)(nian),通過在當地組建技(ji)術(shu)(shu)組、走(zou)航巡(xun)查(cha)(cha)組等專業團隊(dui),建立網格分(fen)(fen)級、部門聯動、污(wu)染(ran)巡(xun)查(cha)(cha)等機制,并提供動態研判(pan)分(fen)(fen)析、污(wu)染(ran)巡(xun)查(cha)(cha)處置、敏感(gan)點防控策(ce)略(lve)以及(ji)工地揚塵、散煤、餐飲油煙等污(wu)染(ran)源專項(xiang)管控服務,逐步(bu)降(jiang)低PM2.5濃(nong)度,提升空氣質量排名(ming)。
2018年(nian)宿州市(shi)PM2.5濃度明(ming)顯下降,擺脫(tuo)倒(dao)一,下降率全(quan)省第3(-17.71%)。
2019年宿州市PM2.5濃度明(ming)顯下降,下降率省內排名第1(-9.09%)。
2019年1-12月宿州(zhou)市(shi)空氣質量改善幅度(du)居168重點城市(shi)第一。
精準臭氧管控技術服務
2020年4月,聚(ju)光科技(ji)進(jin)駐(zhu)湖北宜昌(chang),利(li)用當地(di)基礎空(kong)氣質量監測數據(ju)、光化學(xue)全流程監測數據(ju)以及(ji)走航技(ji)術開展(zhan)臭(chou)(chou)氧(yang)污(wu)染(ran)特(te)征分(fen)析、VOCs區域整(zheng)體特(te)征摸(mo)排、臭(chou)(chou)氧(yang)成(cheng)因診斷及(ji)來源解析工作,并組(zu)建(jian)數據(ju)分(fen)析組(zu)、走航巡查組(zu),確定指(zhi)導專家,建(jian)立了宜昌(chang)市(shi)本(ben)地(di)化臭(chou)(chou)氧(yang)研(yan)判分(fen)析機制、日(ri)會(hui)商機制、預(yu)報預(yu)警機制。針對宜昌(chang)市(shi)工業(ye)企(qi)業(ye)、加油(you)站等行業(ye)開展(zhan)了拉網式巡查和突擊巡查,形成(cheng)巡查問題臺賬,整(zheng)理特(te)征因子(zi)庫,保障臭(chou)(chou)氧(yang)污(wu)染(ran)防治工作有序推進(jin)。
2019年(nian)5-8月(yue)均為不降反升(sheng),2020年(nian)均改善為同比顯著(zhu)下降。變化率(lv)湖北省內排名各月(yue)均有提升(sheng),2020年(nian)8月(yue)下降率(lv)居全省第一(yi)。
優良(liang)(liang)天同(tong)(tong)(tong)比(bi)(bi)增加(jia)(jia)21天。5月(yue)(yue)同(tong)(tong)(tong)比(bi)(bi)增加(jia)(jia)3天;6月(yue)(yue)全(quan)月(yue)(yue)優良(liang)(liang),同(tong)(tong)(tong)比(bi)(bi)增加(jia)(jia)7天;7月(yue)(yue)全(quan)月(yue)(yue)優良(liang)(liang),同(tong)(tong)(tong)比(bi)(bi)增加(jia)(jia)4天;8月(yue)(yue)同(tong)(tong)(tong)比(bi)(bi)增加(jia)(jia)7天。
臭氧(yang)濃度顯著下(xia)降(jiang),6月同比(bi)下(xia)降(jiang)29μg/m3;7月同比(bi)下(xia)降(jiang)38μg/m3,8月同比(bi)下(xia)降(jiang)30μg/m3。
2020年1-6月,宜昌市(shi)空氣質量改善幅度(du)居(ju)全國168城市(shi)第一。
多項技術應用于重點項目中
聚光(guang)科技涉及顆粒(li)物(wu)來源解析(xi)(xi)、光(guang)化(hua)(hua)學(xue)(xue)反應(ying)全過程因子監(jian)測(ce)(ce)系列設備技術成(cheng)熟,已(yi)應(ying)用于眾(zhong)多國(guo)家級(ji)/省級(ji)重(zhong)點(dian)項(xiang)目(mu)建(jian)設,可提供準確可靠的大(da)(da)(da)(da)氣(qi)污(wu)染監(jian)測(ce)(ce)數據,開展精(jing)細(xi)化(hua)(hua)污(wu)染成(cheng)因分(fen)析(xi)(xi)及精(jing)細(xi)化(hua)(hua)管控指導,協(xie)助客戶(hu)實現大(da)(da)(da)(da)氣(qi)污(wu)染管控“產(chan)品-技術-服務(wu)(wu)應(ying)用”的一站式購買。目(mu)前(qian)公(gong)司已(yi)建(jian)設中國(guo)環(huan)境監(jian)測(ce)(ce)總站國(guo)家大(da)(da)(da)(da)氣(qi)顆粒(li)物(wu)組分(fen)-光(guang)化(hua)(hua)學(xue)(xue)監(jian)測(ce)(ce)網(wang)建(jian)設項(xiang)目(mu),海(hai)南(nan)省大(da)(da)(da)(da)氣(qi)復(fu)合(he)污(wu)染綜合(he)來源解析(xi)(xi)項(xiang)目(mu)、廣東顆粒(li)物(wu)組分(fen)監(jian)測(ce)(ce)網(wang)(二期)建(jian)設項(xiang)目(mu)、浙江省環(huan)境監(jian)測(ce)(ce)中心-杭州光(guang)化(hua)(hua)學(xue)(xue)監(jian)測(ce)(ce)網(wang)-金華(hua)光(guang)化(hua)(hua)學(xue)(xue)監(jian)測(ce)(ce)網(wang)、石家莊(zhuang)大(da)(da)(da)(da)氣(qi)復(fu)合(he)超(chao)級(ji)站及應(ying)用項(xiang)目(mu)。此外,公(gong)司擁有專業化(hua)(hua)數據分(fen)析(xi)(xi)服務(wu)(wu)團隊,均由國(guo)內雙一流高(gao)校(xiao)(北(bei)京大(da)(da)(da)(da)學(xue)(xue)、浙江大(da)(da)(da)(da)學(xue)(xue)、復(fu)旦大(da)(da)(da)(da)學(xue)(xue)、南(nan)開大(da)(da)(da)(da)學(xue)(xue)等)碩博學(xue)(xue)歷的高(gao)素(su)質人才組建(jian),并與(yu)國(guo)內知名高(gao)校(xiao)、科研院所有深(shen)入合(he)作。